EBNA-3B- and EBNA-3C-regulated cellular genes in Epstein-Barr virus-immortalized lymphoblastoid cell lines.
نویسندگان
چکیده
The cellular pathways that Epstein-Barr virus (EBV) manipulates in order to effect its lifelong persistence within hosts and facilitate its transmission between hosts are not well understood. The EBV nuclear antigen 3 (EBNA-3) family of latent infection proteins consists of transcriptional regulators that influence viral and cellular gene expression in EBV-infected cells. To identify EBNA-3B- and EBNA-3C-regulated cellular genes potentially important for virus infection in vivo, we studied a lymphoblastoid cell line (LCL) infected with an unusual EBV mutant, where a genetic manipulation to delete EBNA-3B also resulted in a significant decrease in EBNA-3C expression and slower than normal growth (3B(-)/3C(low)). Transcriptional profiling was performed on the 3B(-)/3C(low) LCLs, and comparison of mutant and wild-type LCL profiles resulted in a group of 21 probe sets representing 16 individual genes showing statistically significant differences in expression. Further quantitative reverse transcription-PCR analyses comparing 3B(-)/3C(low) LCLs to a previously described EBNA-3B mutant (3B(-)) where EBNA-3C expression was normal revealed three potential EBNA-3B-repressed genes, three potential EBNA-3C-repressed genes, and two potential EBNA-3C-activated genes. The most highly EBNA-3C-repressed gene was Jagged1, a cell surface ligand and inducer of the Notch receptor signaling pathway that is usurped by EBV genes essential for B-cell immortalization. 3B(-)/3C(low) LCLs expressed increased levels of Jagged1 protein and were able to more efficiently induce functional Notch signaling, and this signaling was dependent on Notch cleavage by gamma-secretase. However, inhibiting gamma-secretase-mediated Notch cleavage did not rescue 3B(-)/3C(low) LCL growth, suggesting that EBNA-3C-mediated repression of this signaling pathway did not contribute to LCL growth in tissue culture. Similarly, expression of the chemokine receptor CXCR4 was reproducibly upregulated in EBNA-3B-null LCLs. Since deletion of EBNA-3B has no significant impact on B-cell immortalization in tissue culture, this finding suggested that EBNA-3B-mediated regulation of CXCR4 may be an important viral strategy for alteration of B-cell homing in the infected host. These studies identify two cellular genes that do not contribute to EBV-induced B-cell growth but whose expression levels are strongly EBNA-3 regulated in EBV-infected primary B cells. These EBV-manipulated cellular pathways may be important for virus survival or transmission in humans, and their independence from EBV-induced B-cell growth makes them potential targets for testing in vivo with the rhesus lymphocryptovirus animal model for EBV infection.
منابع مشابه
Epstein-Barr Virus Nuclear Antigen 3A Promotes Cellular Proliferation by Repression of the Cyclin-Dependent Kinase Inhibitor p21WAF1/CIP1
Latent infection by Epstein-Barr virus (EBV) is highly associated with the endemic form of Burkitt lymphoma (eBL), which typically limits expression of EBV proteins to EBNA-1 (Latency I). Interestingly, a subset of eBLs maintain a variant program of EBV latency - Wp-restricted latency (Wp-R) - that includes expression of the EBNA-3 proteins (3A, 3B and 3C), in addition to EBNA-1. In xenograft a...
متن کاملModulation of Enhancer Looping and Differential Gene Targeting by Epstein-Barr Virus Transcription Factors Directs Cellular Reprogramming
Epstein-Barr virus (EBV) epigenetically reprogrammes B-lymphocytes to drive immortalization and facilitate viral persistence. Host-cell transcription is perturbed principally through the actions of EBV EBNA 2, 3A, 3B and 3C, with cellular genes deregulated by specific combinations of these EBNAs through unknown mechanisms. Comparing human genome binding by these viral transcription factors, we ...
متن کاملExpression of LMP and EBNA genes in Epstein-Barr virus-associated lymphomas in Hu-PBL/SCID mice.
Transplantation of peripheral blood lymphocytes (PBLs) from healthy humans with latent Epstein-Barr virus (EBV) infection into severe combined immunodeficiency (SCID) mice results in development of EBV-associated human B-cell lymphoma. However, the expression of EBV genes in relation to lymphoma development has not been reported. We investigated latent membrane protein (LMP) and EBV nuclear ant...
متن کاملEpstein-barr Virus
The Epstein-Barr virus (EBV), the first isolated human tumour virus, was identified in 1964 by Epstein’s group in a cell line derived from Burkitt lymphoma (Epstein et al., 1964). EBV is a human herpesvirus, classified within the gammaherpesviruses subfamily, and is the prototype of the Lymphocryptovirus genus. In keeping with the systematic nomenclature adopted for all human herpesviruses, the...
متن کاملEpstein-barr virus nuclear antigen 3C activates the latent membrane protein 1 promoter in the presence of Epstein-Barr virus nuclear antigen 2 through sequences encompassing an spi-1/Spi-B binding site.
The Epstein-Barr virus (EBV) nuclear antigen 3C (EBNA-3C) protein is a transcriptional regulator of viral and cellular genes that is essential for EBV-mediated immortalization of B lymphocytes in vitro. EBNA-3C can inhibit transcription through an association with the cellular DNA-binding protein Jkappa, a function shared by EBNA-3A and EBNA-3B. Here, we report a mechanism by which EBNA-3C can ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of virology
دوره 80 20 شماره
صفحات -
تاریخ انتشار 2006